miércoles, 30 de noviembre de 2011

TEOREMAS DE REDES

El teorema de superposición sólo se puede utilizar en el caso de circuitos eléctricos lineales, es decir circuitos formados únicamente por componentes lineales (en los cuales la amplitud de la corriente que los atraviesa es proporcional a la amplitud de la tensión a sus extremidades).
El teorema de superposición ayuda a encontrar:
  • Valores de tensión, en una posición de un circuito, que tiene mas de una fuente de tensión.
  • Valores de corriente, en un circuito con más de una fuente de tensión

·         TEOREMA DE PUPERPOSICION

En el circuito de arriba de la figura de la izquierda, calculemos la tensión en el punto A utilizando el teorema de superposición.Como hay dos generadores, hay que hacer dos cálculos intermedios.


En el primer cálculo, conservamos la fuente de tensión de la izquierda y remplazamos la fuente de corriente por un circuito abierto. La tensión parcial obtenida es::

En el segundo cálculo, guardamos la fuente de corriente de derecha y remplazamos la fuente de tensión por un cortocircuito. La tensión obtenida es
La tensión que buscamos es la suma de las dos tensiones parciales::
·         TEORAMA DE THEVENIN

Tensión de Thévenin

La tensión de thévenin Vth se define como la tensión que aparece entre los terminales de la carga cuando se desconecta la resistencia de la carga. Debido a esto, la tensión de thévenin se denomina, a veces, tensión en circuito abierto (Vca)

Resistencia (impedancia) de Thévenin

La impedancia de Thévenin simula la caída de potencial que se observa entre las terminales A y B cuando fluye corriente a través de ellos. La impedancia de Thevenin es tal que:
Si queremos calcular la impedancia de Thevenin sin tener que desconectar ninguna fuente un método sencillo consiste en reemplazar la Siendo V1 el voltaje que aparece entre los terminales A y B cuando fluye por ellos una corriente I1 y V2 el voltaje entre los mismos terminales cuando fluye una corriente I2
Una forma de obtener la impedancia Thevenin es calcular la impedancia que se "ve" desde los terminales A y B de la carga cuando ésta está desconectada del circuito y todas las fuentes de tensión e intensidad han sido anuladas. Para anular una fuente de tensión, la sustituimos por un circuito cerrado. Si la fuente es de intensidad, se sustituye por un circuito abierto.
Para calcular la impedancia Thevenin, debemos observar el circuito, diferenciando dos casos: circuito con únicamente fuentes independientes (no dependen de los componentes del circuito), o circuito con fuentes dependientes.
Para el primer caso, anulamos las fuentes del sistema, haciendo las sustituciones antes mencionadas. La impedancia de Thévenin será la equivalente a todas aquellas impedancias que, de colocarse una fuente de tensión en el lugar de donde se sustrajo la impedancia de carga, soportan una intensidad.
Para el segundo caso, anulamos todas las fuentes independientes, pero no las dependientes. Introducimos una fuente de tensión (o de corriente) de prueba Vprueba (Iprueba) entre los terminales A y B. Resolvemos el circuito, y calculamos la intensidad de corriente que circula por la fuente de prueba. Tendremos que la impedancia Thevenin vendrá dada por
impedancia de carga por un cortocircuito y calcular la corriente Icc que fluye a través de este corto. La impedancia Thévenin estará dada entonces por:
De esta manera se puede obtener la impedancia de Thévenin con mediciones directas sobre el circuito real a simular

Ejemplo


En primer lugar, calculamos la tensión de Thévenin entre los terminales A y B de la carga; para ello, la desconectamos del circuito. Una vez hecho esto, podemos observar que la resistencia de 10 Ω está en circuito abierto y no circula corriente a través de ella, con lo que no produce ninguna caída de tensión. En estos momentos, el circuito que necesitamos estudiar para calcular la tensión de Thévenin está formado únicamente por la fuente de tensión de 100 V en serie con dos resistencias de 20 Ω y 5 Ω. Como la carga RL está en paralelo con la resistencia de 5 Ω (recordar que no circula intensidad a través de la resistencia de 10 Ω), la diferencia de potencial entre los terminales A y B es igual que la tensión que cae en la resistencia de 5 Ω (ver también Divisor de tensión), con lo que la tensión de Thévenin resulta:
Para calcular la resistencia de Thévenin, desconectamos la carga del circuito y anulamos la fuente de tensión sustituyéndola por un cortocircuito. Si colocásemos una fuente de tensión (de cualquier valor) entre los terminales A y B, veríamos que las tres resistencias soportarían una intensidad. Por lo tanto, hallamos la equivalente a las tres: las resistencias de 20 Ω y 5 Ω están conectadas en paralelo y éstas están conectadas en serie con la resistencia de 10 Ω, entonces:
·         TEOREMA DE NORTON

Cálculo del circuito Norton equivalente

Para calcular el circuito Norton equivalente:
  1. Se calcula la corriente de salida, IAB, cuando se cortocircuita la salida, es decir, cuando se pone una carga nula entre A y B. Esta corriente es INo.
  2. Se calcula la tensión de salida, VAB, cuando no se conecta ninguna carga externa, es decir, con una resistencia infinita entre A y B. RNo es igual a VAB dividido entre INo.
El circuito equivalente consiste en una fuente de corriente INo, en paralelo con una resistencia RNo.

 Circuito Thévenin equivalente a un circuito Norton

Para analizar la equivalencia entre un circuito Thévenin y un circuito Norton pueden utilizarse las siguientes ecuaciones:

 Ejemplo de un circuito equivalente Norton

Paso 4: El circuito equivalente
En el ejemplo, Itotal viene dado por:
Usando la regla del divisor, la intensidad de corriente eléctrica tiene que ser:

No hay comentarios:

Publicar un comentario